3 research outputs found

    Self-adjusting DBA algorithm for next generation PONs (NG-PONs) to support 5G fronthaul and data services

    Get PDF
    In this article, we propose a novel dynamic bandwidth allocation (DBA) algorithm for NG-PON networks to jointly support 5G fronthaul and best effort data services in the same PON channel. The proposed self-adjusting DBA adjusts dynamically the allocation intervals to the current required fronthaul throughput based on the requests reported from the ONUs. It is suitable for dynamic 5G scenarios where, for energy efficiency reasons, the fronthaul connections are dynamically set up and torn down over time: when a new 5G fronthaul connection is set up, the maximum latency of the current connections is guaranteed while when a current 5G fronthaul connection is torn down, the freed transmission resources become available for data services. The only requirement is that the capacity of the channel in the NG-PON network is enough for the throughput of all 5G fronthaul connections supported by the channel. In this way, the proposed self-adjusting DBA algorithm has the advantage of requiring a much lower management coordination between the 5G infrastructure and the NG-PON infrastructure than the one required when the throughput of the 5G fronthaul connections is supported as a guaranteed service.publishe

    Dynamic Bandwidth Allocation for NG-PONs with channel bonding

    Get PDF
    Channel bonding is a recently proposed technique to provide higher aggregated line rates in NG-PONs by allowing ONUs to operate simultaneously in multiple wavelengths. On the other hand, the Dynamic Bandwidth Allocation (DBA) algorithm allocates to each ONU the grant time interval on each upstream frame that the ONU can use to transmit its data in the upstream direction. Channel bonding imposes a new challenge in the DBA algorithm as the grant time interval allocated to a ONU must be the same in all its channel-bonded wavelengths. In this work, we propose a new DBA algorithm for NG-PONs supporting data services which is a combination of a proportional fairness strategy and a max-min fairness strategy and guarantees the constraints imposed by channel bonding. We illustrate the merits of the new algorithm with two cases based on simulation. The results show that channel bonding can provide better QoS performance to data services even in cases where it is not strictly required.publishe

    Trends in Cloud Computing Paradigms: Fundamental Issues, Recent Advances, and Research Directions toward 6G Fog Networks

    Get PDF
    There has been significant research interest in various computing-based paradigms such as cloud computing, Internet of Things, fog computing, and edge computing, due to their various associated advantages. In this chapter, we present a comprehensive review of these architectures and their associated concepts. Moreover, we consider different enable technologies that facilitate computing paradigm evolution. In this context, we focus mainly on fog computing considering its related fundamental issues and recent advances. Besides, we present further research directions toward the sixth generation fog computing paradigm
    corecore